Corso di Laurea in Informatica	Analisi Matematica	codice 926952
		04 settembre 2025
		I

Ogni domanda ha una risposta giusta e tre sbagliate. Inserire la lettera corrispondente al risultato corretto nel riquadro. Ogni risposta esatta vale 3, ogni risposta sbagliata vale -1, ogni risposta mancante vale 0.

(Cognome)													(No	ome)				ume	i ma	trice	ola)				

1	a
3	b
	b
4	d
5 6	d
	b
7	b
8	a
9	С
10	a

- 1. L'insieme $A = \{x \in \mathbb{R} : |x| > 1\}$ è
- ▶ (a) aperto (b) limitato superiormente (c) limitato inferiormente (d) un intervallo

Solutione:

2. La derivata della funzione $f(x) = x^2 \arctan\left(\frac{1}{x}\right) + x \log(1+x^2)$ è

(a)
$$\frac{x^4 + x}{1 + x^2} + 2x \arctan\left(\frac{1}{x}\right) + \log(1 + x^2)$$

(b) $2x \arctan\left(\frac{1}{x}\right) + \frac{x^2}{1 + x^2} + \log(1 + x^2)$
(c) 0
(d) $\frac{2x^3 + 1}{1 + x^2}$

Soluzione:

$$f(x) = \chi^{2} \operatorname{arcty}(\frac{1}{x}) + \chi \log(1+x^{2})$$

$$f(x) = 2 \times \operatorname{arcty}(\frac{1}{x}) + \chi^{2} \frac{1}{1+(\frac{1}{x})^{2}} \left(-\frac{1}{x^{2}}\right) + 1 \cdot \log(1+x^{2}) + \chi \cdot \frac{1}{1+\chi^{2}} \cdot 2x =$$

$$= 2 \times \operatorname{arty}(\frac{1}{x}) - \frac{\chi^{2}}{\chi^{2}+1} + \log(1+\chi^{2}) + \frac{2\chi^{2}}{1+\chi^{2}} =$$

$$= 2 \times \operatorname{arcty}(\frac{1}{x}) + \frac{\chi^{2}}{1+\chi^{2}} + \log(1+\chi^{2})$$

3. Una primitiva della funzione $f(x) = 2x\sin(x^2 + 1) + 3$ è

(a)
$$3x^2\cos(x^2+1)$$

$$\blacktriangleright$$
 (b) $3x - \cos(x^2 + 1) + 5$

(c)
$$3x^2 + \cos(x^2 + 1)$$

(d)
$$3(x^2+1)\cos x$$

4. La funzione
$$F(x)=\left\{ \begin{array}{ll} \int\limits_0^x \frac{\log(1+t^2)}{t+2}\,dt & \text{ se } x>0 \\ e^x-x & \text{ se } x\leq 0 \end{array} \right.$$

(a) è derivabile in x=0

- (b) è continua ma derivabile solo a destra in x=0
- (c) è continua ma derivabile solo a sinistra in x = 0 \triangleright (d) non è continua in x = 0

Osserviano de la frenzione flt) =
$$\frac{\log(1+t^2)}{t+2}$$
 è centinno in un intorno del punto $t=0$, quindi è integrabile se condo Riemanno in un intorno di $t=0$, pertonto

$$\lim_{x\to 0^+} F(x) = \lim_{x\to 0^+} \int_0^x \frac{\log(1+t^2)}{t+2} dt = 0$$

5.
$$\int_{1}^{+\infty} \frac{1}{x} \cos\left(\frac{1}{x^2}\right) dx$$

- (a) diverge negativamente (b) converge
- (c) non esiste
- (d) diverge positivamente

Soluzione:

Pouisurs
$$f(x) = \frac{1}{x}$$
 les $(\frac{1}{x^2})$ e asservioure du f é

Osservious de lier cos
$$(\frac{1}{X}z) = cos o = 1$$
 quidi $x \rightarrow \infty$

Sceglians
$$g(x) = \frac{1}{x}$$
. Poide lin $f(x) = \lim_{x \to +\infty} \cos(\frac{1}{x^2}) = 1$

6. L'integrale generalizzato
$$\int_{0}^{\infty} \left(\sqrt{1+x^2}-x\right)^{3/2} dx$$

- (a) non esiste
- ▶ (b) converge
- (c) diverge negativamente (d) diverge positivamente

Solutione:
$$\int_{0}^{\infty} \left(\sqrt{1+x^{2}}-x\right)^{\frac{3}{2}} dx$$

La fundane $f(x)_{=} \left(\sqrt{1+x^{2}}-x\right)^{\frac{3}{2}} = \text{continue in } \left[0.1+\infty\right)$

inoltre $f(x)_{\geq 0} \forall x \in \mathbb{I}^{0,1+\infty}$. Osserviano che , $\forall x \geq 0$,

$$f(x)_{=} \left(\left(x^{2}\left(\frac{1}{x^{2}}+1\right)\right)^{\frac{1}{2}}-x\right)^{\frac{3}{2}} = \left(x\left(1+\frac{1}{x^{2}}\right)^{\frac{1}{2}}-x\right)^{\frac{3}{2}} =$$

$$= x^{\frac{3}{2}}\left(\left(1+\frac{1}{x^{2}}\right)^{\frac{1}{2}}-1\right)^{\frac{3}{2}}$$

Pricordiane ora che $(1+t)_{=} = 1+xt+o(t)$ for $t\to \infty$.

Udilitriano questo sviluppo di Toylor on $d=\frac{1}{2}$, $t=\frac{4}{x^{2}}$ for $x\to +\infty$.

$$f(x)_{=} x^{\frac{3}{2}}\left(A+\frac{1}{2}\cdot\frac{1}{x^{2}}+o(\frac{1}{x^{2}})-x\right)^{\frac{3}{2}} = x^{\frac{1}{2}}\left(\frac{1}{2}+o(1)\right)^{\frac{3}{2}} = \frac{1}{x^{\frac{3}{2}}}\left(\frac{1}{2}+o(1)\right)$$

Scepliano $g(x)_{=} = \frac{1}{x^{\frac{3}{2}}}\left(\frac{1}{x^{2}}+o(1)\right)$

Scepliano $g(x)_{=} = \frac{1}{x^{\frac{3}{2}}}\left(\frac{1}{x^{2}}+o(1)\right)$

Doto che $\int g(x) dx$ converge, dal criterio dul confronto asintotino, anche $\int f(x)dx$ converge. Deta che $f(x)_{=} = x$ centinue in $[0,1]$, oblesseuro che $\int f(x)dx$ converge, $f(x)_{=} = x$ centinue in $[0,1]$, oblesseuro che $\int f(x)dx$ converge, $f(x)_{=} = x$ centinue in $[0,1]$, oblesseuro che $\int f(x)dx$ converge, $f(x)_{=} = x$ centinue in $[0,1]$, oblesseuro che $\int f(x)dx$ converge, $f(x)_{=} = x$ centinue in $[0,1]$, oblesseuro che $\int f(x)dx$ converge, $f(x)_{=} = x$ centinue in $[0,1]$

7.
$$\lim_{n \to +\infty} \frac{4^n + \log n}{e^n + n^5} =$$

(a) 0

 \blacktriangleright (b) $+\infty$

I L(x) dx converge.

(c) $\frac{4}{6}$

(d) $\log \frac{4}{5}$

Soluzione:

lieu
$$\frac{4^n + \log n}{e^n + n^s} = \lim_{n \to +\infty} \frac{4^n \left(1 + \frac{\log n}{4^n}\right)}{e^n \left(1 + \frac{n^s}{e^n}\right)}$$

$$= \lim_{n \to +\infty} \frac{4^n + \log n}{e^n + n^s} = \lim_{n \to +\infty} \frac{1 + \log n}{1 + n^s} = \lim_{n \to +\infty} \frac{1 + o}{1 + o} = +\infty$$

per gerardia di infiniti e perdie $\frac{4}{e} > 1$.

- 8. La serie $\sum_{n>1} \frac{(\sin n)^n}{n^2}$
- ► (a) converge
- (b) è indeterminata
- (c) diverge positivamente (d) diverge negativamente

Soluzione:

Pouisure
$$a_n = \frac{(\sin n)^n}{N^2}$$
 e esserviance de la successione a_n è o regno variabile. Proviante le convergenta assoluta. $0 \le |a_n| = \frac{|\sin n|^n}{N^2} \le \frac{1}{n^2}$ Scapliance quindi $b_n = \frac{1}{n^2}$ e utilitationne il criterio del confronto. Poi de $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converge, anche $\sum_{n=1}^{\infty} |a_n|$ converge, quindi, per il criterio di convergenta assoluta, $\sum_{n=1}^{\infty} a_n$ converge.

- **9.** La norma del vettore $\begin{pmatrix} 9 \\ 3 \\ 3 \end{pmatrix}$ vale
 - (a) 9

- (b) $\sqrt{15}$
- (c) $3\sqrt{11}$
- (d) 15

- **10.** L'insieme $\{(x,y) \in \mathbb{R}^2 : |xy| < 1\}$
- \blacktriangleright (a) non è limitato
 - (c) è chiuso

- (b) è limitato
- (d) non è né aperto né chiuso

L'insiene |xy|=1 <=> xy=1 oppure xy=-1

quindi l'equazione |xy|=1 descrive il grafico di

due iperboli. |xy|<1

L'insiene |xy|<1

è non limitato.

Corso di Laurea in Informatica	Analisi Matematica	codice 301418 04 settembre 2025

Ogni domanda ha una risposta giusta e tre sbagliate. Inserire la lettera corrispondente al risultato corretto nel riquadro. Ogni risposta esatta vale 3, ogni risposta sbagliata vale -1, ogni risposta mancante vale 0.

(Cognome)														(No	me)			(N	ume	ro d	i ma	trico	la)			

1	b
3	a
3	С
$\boxed{4}$	b
5	С
6	b
7	d
8	b
9	b
10	d

1. L'insieme $A = \{x \in \mathbb{R} : |x| > 1\}$ è

(a) limitato superiormente (b) aperto

(c) un intervallo

(d) limitato inferiormente

Solutione:

2. La funzione $f: \mathbb{R} \longrightarrow \mathbb{R}$ definita da f(x) = |x| - |x - 2|

▶ (a) è limitata

(b) non è limitata né superiormente né inferiormente

(c) è limitata superiormente ma non inferiormente

(d) è limitata inferiormente ma non superiormente

Soluzione:

$$f(x) = |x| - |x-2|$$

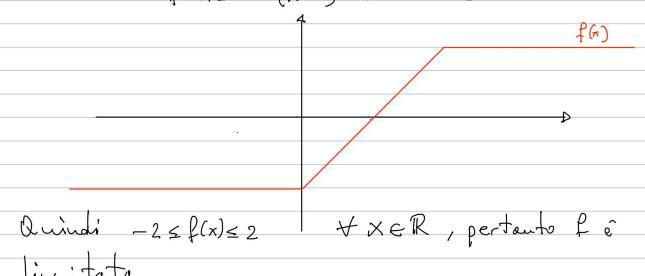
Ricordiano de
$$|x|= \begin{cases} x & \text{pe } x \geq 0 \\ -x & \text{fe } x < 0 \end{cases} / |x-2|= \begin{cases} x-2 & \text{pe } x \geq 2 \\ 2-x & \text{fe } x < 2 \end{cases}$$

quildi

$$X < 0 \Rightarrow f(x) = -x - (2-x) = -x - 2 + x = -2$$

$$0 \le x \le 2$$
 => $f(x) = x - (2 - x) = x - 2 + x = 2x - 2$

$$2 \le X$$
 => $P(x) = X - (X-2) = X-X+2=2$



3. Una primitiva della funzione $f(x) = 2x\sin(x^2 + 1) + 3$ è

(a) $3x^2\cos(x^2+1)$

(b) $3x^2 + \cos(x^2 + 1)$

• (c) $3x - \cos(x^2 + 1) + 5$

(d) $3(x^2+1)\cos x$

Calcolians mes primitira di exsin(x²+1)
con la sostitutione
$x^2+1=t$, $dt=2x$ $2xdx=dt$
$\int 2x \sin(x^{2}+1) dx = \int \sin t dt = -\cos t + c = -\cos(x^{2}+1) + c$
Quindi
$\int 2x \sin(x^2 + 1) + 3 dx = \int 2x \sin(x^2 + 1) dx + \int 3 dx =$
$= - (3)(\chi^2_{+1}) + 3x + C \qquad \forall C \in \mathbb{R}$
Sceglieudo C=5 otheriams de 3x-cos(x1,1)+5
è una poi mition di f(x).

- **4.** La funzione $f: \mathbb{R} \longrightarrow \mathbb{R}$ definita da $f(x) = \int\limits_{x^3}^0 e^t e^{-t} \, dt$
 - (a) è debolmente crescente

▶ (b) è limitata superiormente

(c) è limitata inferiormente

(d) ha minimo

 $\int e^{t} - e^{-t} dt = e^{t} - (-e^{-t}) + c = e^{t} + e^{-t} + c$ quindi $F(x) = \int e^{t} - e^{-t} dt = \left[e^{t} + e^{-t} \right]^{2} = e^{+} + e^{-} - (e^{-} + e^{-}) = e^{-} + e^{-} + e^{-} + e^{-} = e^{-} = e^{-} + e^{-} + e^{-} = e^{-} + e^{-} = e^{-} + e^{-} = e^{-} + e^{-} + e^{-} + e^{-} + e^{-} = e^{-} + e^{-} + e^{-} = e^{-} + e^{-} + e^{-} + e^{-}$

5.
$$\int_{1}^{+\infty} \frac{1}{x} \cos\left(\frac{1}{x^2}\right) dx$$

- (a) non esiste
- (b) converge
- (c) diverge positivamente (d) diverge negativamente

Osservious de lier
$$\omega_1(\frac{1}{x^2}) = \omega_1 = 1$$
 quivdi

Sceglians
$$g(x) = \frac{1}{x}$$
. Poidie lieu $f(x) = \lim_{x \to +\infty} \cos(\frac{1}{x^2}) = 1$

$$\mathbf{6.} \int_{-\infty}^{+\infty} t \, e^{-t^3} \, dt$$

- (a) diverge positivament (b) diverge negativamente (c) converge
- (d) non esiste

Uvendo i risultati rule due semirette otteniamo f te^{-t³} dt = -20

7.
$$\lim_{n \to +\infty} \frac{4^n + \log n}{e^n + n^5} =$$
(a) $\log \frac{4}{5}$ (b) 0 (c) $\frac{4}{e}$ \blacktriangleright (d) $+\infty$

Solutione:

lieu
$$\frac{4^n + \log n}{e^n + n^5}$$
 lieu $\frac{4^n}{e^n}$ $\frac{\log n}{4^n}$ $\frac{\log n}{e^n}$ $\frac{\log n}{e^n}$ $\frac{\log n}{e^n}$ $\frac{\log n}{1 + n^5}$ $\frac{\log n}{1 + n$

8. La serie
$$\sum_{n\geq 1} \frac{(\sin n)^n}{n^2}$$

(a) diverge negativamente (b) converge

(c) diverge positivamente (d) è indeterminata

Pouisies
$$a_n = \frac{(\sin n)}{N^2}$$
 e osserviamo die la successione a_n è a regno variabile. Proviame le convergenta assoluta. $0 \le |a_n| = \frac{|\sin n|^n}{N^2} \le \frac{1}{N^2}$
Scapliamo quindi $b_n = \frac{1}{N^2}$ e utilitatione il criterio del confronto. Poi de $\sum_n \frac{1}{N^2}$ converge, ande $\sum_n \frac{1}{N^2}$ converge, quindi, per il criterio di convergenta assoluta, $\sum_n a_n$ converge.

9. La norma del vettore $\begin{pmatrix} 9 \\ 3 \\ 3 \end{pmatrix}$ vale

(a) $\sqrt{15}$

▶ (b) $3\sqrt{11}$

(c) 15

(d) 9

Solutione:

10. La funzione
$$f(x,y)=\left\{ \begin{array}{ll} \dfrac{y^2}{x} & \text{ se } x\neq 0 \\ 0 & \text{ se } x=0, \end{array} \right.$$
 nel punto (0,0)

- (a) ha entrambe le derivate parziali ed è continua
- (b) è continua ma non ha nessuna delle derivate parziali
- (c) non è continua e non ha nessuna delle derivate parziali
- ► (d) ha entrambe le derivate parziali ma non è continua

|--|

Ogni domanda ha una risposta giusta e tre sbagliate. Inserire la lettera corrispondente al risultato corretto nel riquadro. Ogni risposta esatta vale 3, ogni risposta sbagliata vale -1, ogni risposta mancante vale 0.

(Cognome)														(No	me)			(N	ume	ro d	i ma	trico	la)			

1	С
2	a
$\frac{2}{3}$	d
4	a
5	d
6	a
7	b
8	b
9	b
10	a

1. L'insieme $A = \{x \in \mathbb{R} : |x| > 1\}$ è

(a) un intervallo

(b) limitato superiormente (c) aperto

(d) limitato inferiormente

Solutione:

Osserviaure de lx/>1 (=> x<-1 oppure x>1, quindi

A= (-00,-1) v (1,+00)

che à un insieure aperto non limitato no inferiorneente
ne superiormente.

2. La funzione $f: \mathbb{R} \longrightarrow (0, +\infty)$ definita da $f(x) = e^{x \cos x}$

▶ (a) è surgettiva ma non iniettiva

(b) è bigettiva

(c) non è né iniettiva né surgettiva

(d) è iniettiva ma non surgettiva

Soluzione:

3. Una primitiva della funzione $f(x) = 2x\sin(x^2 + 1) + 3$ è

(a)
$$3x^2\cos(x^2+1)$$

(b)
$$3x^2 + \cos(x^2 + 1)$$

(c)
$$3(x^2+1)\cos x$$

$$ightharpoonup$$
 (d) $3x - \cos(x^2 + 1) + 5$

$$4. \int_{0}^{1} \sqrt[3]{7x+1} \, dx =$$

▶ (a) $\frac{45}{28}$

(b) $-\frac{47}{24}$

(c) $-\frac{9}{16}$

(d) 12

Soluzione:

$$\int_{3}^{3}\sqrt{7}\times+1$$

Esquisons la sostiturane 7x+1=t => 7x=t-1 x= \frac{t-1}{7}

$$\frac{dx}{dt} = \frac{1}{7}$$
 $dx = \frac{dt}{7}$, quindi

$$\int \sqrt[3]{4 \times n} dx = \int \sqrt[3]{t} \frac{dt}{7} = \frac{1}{7} \int t^{1/3} dt = \frac{1}{7} \cdot \frac{3}{4} t^{4/3} + c = \frac{3}{27} t^{4/3} + c$$

= \frac{3}{28} (7x+1) +c
Utilizzando il teonema di Torricelli otteniamo

$$\int_{0}^{1} \sqrt{7} x + 1 \, dx = \left[\frac{3}{29} (7x + 1)^{4/3} \right]_{0}^{1} = \frac{3}{29} \left(8^{4/3} - 1^{4/3} \right) =$$

$$= \frac{3}{28} \left(2^4 - 1 \right) = \frac{3}{28} \left(16 - 1 \right) = \frac{45}{28}$$

$$5. \int_{1}^{+\infty} \frac{1}{x} \cos\left(\frac{1}{x^2}\right) dx$$

(a) non esiste

(b) diverge negativamente (c) converge

(d) diverge positivamente

Solutione:

Osservioure du liur
$$\omega s\left(\frac{1}{x^2}\right) = cos o = 1$$
 quivdi $x \rightarrow \infty$

Sceglians
$$g(x) = \frac{1}{x}$$
. Poidie lieu $\frac{f(x)}{x^2+2} = \lim_{x\to +\infty} \cos(\frac{1}{x^2}) = 1$

6.
$$\int_{0}^{+\infty} \left(e^{\frac{x-1}{x+1}} - \frac{1}{e} \right) \frac{1}{x^{\frac{3}{2}}} dx$$

► (a) converge

(b) diverge positivamente (c) non esiste

(d) diverge negativamente

Per x-so
$$e^{\frac{X-1}{X+1}} - \frac{1}{e} = e^{\frac{X-1}{X+1}} - \frac{1}{e} = e^{\frac{1}{e}} \left(e^{\frac{X-1}{X+1}+1} - 1 \right) = e^{\frac{1}{e}} \left(e^{\frac{X-1}{X+1}} - 1 \right)$$

$$= e^{\frac{1}{e}} \left(e^{\frac{2X}{X+1}} - 1 \right) = e^{\frac{1}{e}} \left(e^{\frac{X-1}{X+1}} + o(\frac{2X}{X+1}) - 1 \right) = e^{\frac{1}{e}} \left(e^{\frac{2X}{X+1}} + o(\frac{2X}{X+1}) - 1 \right) = e^{\frac{1}{e}} \left(e^{\frac{2X}{X+1}} + o(\frac{2X}{X+1}) - 1 \right) = e^{\frac{1}{e}} \left(e^{\frac{2X}{X+1}} + o(\frac{2X}{X+1}) - 1 \right) = e^{\frac{1}{e}} \left(e^{\frac{2X}{X+1}} + o(\frac{2X}{X+1}) - 1 \right) = e^{\frac{1}{e}} \left(e^{\frac{2X}{X+1}} - 1 \right) = e^{\frac{1}{e}} \left(e^{\frac{$$

7.
$$\lim_{n \to +\infty} \frac{4^n + \log n}{e^n + n^5} =$$
(a) $\frac{4}{e}$
 \blacktriangleright (b) $+\infty$
(c) $\log \frac{4}{5}$
(d) 0

Ne sepre de flxldx converge.

lieu
$$\frac{4^n + \log n}{e^n + n^s} = \lim_{n \to +\infty} \frac{4^n \left(1 + \frac{\log n}{4^n}\right)}{e^n \left(1 + \frac{n^s}{e^n}\right)}$$

$$= \lim_{n \to +\infty} \frac{4^n + \log n}{e^n + n^s} = \lim_{n \to +\infty} \frac{1 + \log n}{1 + \frac{n^s}{e^n}} = \lim_{n \to +\infty} \frac{1 + o}{1 + o} = +\infty$$

per gerardial di infruiti e perché $\frac{4}{e} > 1$.

- 8. La serie $\sum_{n>1} \frac{(\sin n)^n}{n^2}$
 - (a) diverge positivament (b) converge
- (c) diverge negativamente (d) è indeterminata

Soluzione:

Pouiseur
$$a_n = \frac{\sin n}{N^2}$$
 e osserviame de la successione
 a_n è o segno variabile. Proviaens le convergenta assoluta.

 $0 \le |a_n| = \frac{|\sin n|^n}{N^2} \le \frac{1}{N^2}$

Scapliamo quindi $b_n = \frac{1}{N^2}$ e utilitatiamo il criterio del confronto. Poide $\sum_n \frac{1}{N^2}$ converge, ande $\sum_n |a_n|$ converge, quindi, per il criterio di convergenta assoluta,

 $\sum_n a_n$ converge.

9. La norma del vettore $\begin{pmatrix} 9 \\ 3 \\ 3 \end{pmatrix}$ vale

(a) 9

- (b) $3\sqrt{11}$
- (c) $\sqrt{15}$
- (d) 15

Solutione:

- 10. La funzione $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ definita da $f(x,y) = e^{1-x}(y^3 2xy)$
- ▶ (a) non è né superiormente né inferiormente limitata
- (b) è inferiormente ma non superiormente limitata

(c) è limitata

(d) è superiormente ma non inferiormente limitata

f(x,y) = e (y³-2xy)

La funcione è definita in tuto R¹.

Consideriamo la restritione alla cuerra p(t)=(1,t)

(tetta x=1).

g(t)=f(x(t))=f(1,t)=e (t³-2t)=t³-2t

line g(t)=+∞, line g(t)=-∞

t++∞

quindi f non è ne superiornente ne inferiormente

Unitata.

Corso di Laurea in Informatica	Analisi Matematica	codice 169776 04 settembre 2025

Ogni domanda ha una risposta giusta e tre sbagliate. Inserire la lettera corrispondente al risultato corretto nel riquadro. Ogni risposta esatta vale 3, ogni risposta sbagliata vale -1, ogni risposta mancante vale 0.

(Cognome)														(No	me)			(N	ume	ro d	i ma	trico	la)			

1	d
2	a
$\frac{2}{3}$	С
4	С
5	С
6	b
7	d
8	d
9	b
10	d

1. L'insieme $A = \{x \in \mathbb{R} : |x| > 1\}$ è

(a) limitato superiormente (b) un intervallo

(c) limitato inferiormente (d) aperto

Solutione:

Osserviauxo de (x/>1 <=> x<-1 oppure x>1, quindi
A= (-20,-1) v(1,+20)
che à un insieme aperto non limitato no inferiormente
ne superiormente.

2. L'insieme $\{x \in \mathbb{R} : |\sin x| < 1\}$ è:

▶ (a) non limitato

(b) limitato superiormente

(c) limitato inferiormente

(d) un intervallo

A = $\int X \in \mathbb{R}$: $|\sin x| < 1$?

Possioner risolvere esplicitamente la disagnagliante otherendo $|\sin x| < 1$ (=>) $-1 < \sin x < 1$ (=>) $X \neq kT$, $k \in \mathbb{Z}$, quindi A $\in 1$ unione di in finiti in kervalli di ampietta TA = $\bigcup (kT, (k+1)T)$. $k \in \mathbb{Z}$ Ne seque che A von $\in 1$ unitato.

3. Una primitiva della funzione $f(x) = 2x \sin(x^2 + 1) + 3 \in 1$ (a) $3x^2 \cos(x^2 + 1)$ (b) $3x^2 + \cos(x^2 + 1)$ (c) $3x - \cos(x^2 + 1) + 5$ (d) $3(x^2 + 1) \cos x$

(a) $3x \cos(x + 1)$ (b) $3x + \cos(x + 1)$ (c) $3x - \cos(x^2 + 1) + 5$ (d) $3(x^2 + 1)\cos x$ Soluzione:

Calcoliano une primitiva di $2x \sin(x^2 + 1)$ Con la $5 \circ 777 tu + i \circ ue$ $x^2 + 1 = t$ $dx = 2x \quad 2x dx = dt$

 $\int 2x \sin(x^2 + i) dx = \int \sin t dt = -\cos t + c = -\cos(x^2 + i) + c$

Quindi

 $\int 2x \sin(x^2x) + 3 dx = \int ex \sin(x^2x) dx + \int 3 dx =$

 $= \sim \omega(\chi^2_{+1}) + 3x + c$ $\forall c \in \mathbb{R}$

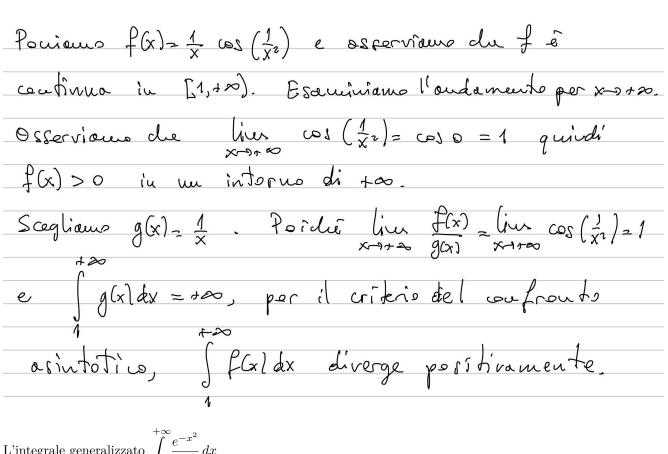
Sceglieudo c=5 otheriaus de 3x-cos(x1+1)+5

è una poi unitire di f(x)

- 4. La funzione $G:\mathbb{R}\longrightarrow\mathbb{R}$ definita da $G(x)=\int_x^{2x}e^{-t^2}\,dt$
 - (a) è sempre positiva
 - (b) è debolmente crescente
- ▶ (c) ha un punto di massimo locale e uno di minimo locale
 - (d) è sempre negativa

5.
$$\int_{1}^{+\infty} \frac{1}{x} \cos\left(\frac{1}{x^2}\right) dx$$

- (a) diverge negativamente (b) converge
- ▶ (c) diverge positivamente (d) non esiste



6. L'integrale generalizzato
$$\int_{-\infty}^{+\infty} \frac{e^{-x^2}}{x} dx$$

(a) vale
$$+\infty$$

(c) vale
$$\frac{\pi^2}{4}$$

La fursiene
$$f(x) = \frac{e^{-x^2}}{x}$$
 è dispari e l'intervallo di integrasione è simuetrio. Essenimione $\int_{-x}^{2} \frac{e^{-x^2}}{x} dx$

Per $x \to 0^+$ $\frac{e^{-x^2}}{x} = \frac{1 + o(1)}{x}$ quindi predieno $g(x) = \frac{1}{x}$

line $\frac{f(x)}{g(x)} = \lim_{x \to 0^+} \frac{1 + o(1)}{x} \cdot x = 1$. Dato due $\int_{-x}^{1} \frac{1}{x} dx = +\infty$

Le que de $\int_{-x}^{2} f(x) dx = +\infty$ (confronto o sin totics).

Per simutria $\int_{-x}^{2} f(x) dx = -\infty$ quindi $\int_{-x}^{2} f(x) dx$ non essiste.

7.
$$\lim_{n \to +\infty} \frac{4^n + \log n}{e^n + n^5} =$$

(a)
$$\log \frac{4}{5}$$

(b)
$$\frac{4}{e}$$

$$(d) + \infty$$

lieu
$$\frac{4^n + \log n}{e^n + n^s}$$
 lieu $\frac{4^n \left(1 + \frac{\log n}{4^n}\right)}{e^n \left(1 + \frac{n^s}{e^n}\right)}$

= hier $\frac{4^n}{e^n}$ lieu $\frac{1 + \frac{\log n}{e^n}}{1 + \frac{n^s}{e^n}}$ $\frac{1 + 0}{n + 0} = +\infty$

per gerardial di infruíti e perdió $\frac{4}{e} > 1$.

8. La serie
$$\sum_{n\geq 1} \frac{(\sin n)^n}{n^2}$$

(a) diverge negativamente (b) diverge positivamente (c) è indeterminata \blacktriangleright (d) converge

Soluzione:

Pouiseur
$$a_n = \frac{(\sin n)^n}{N^2}$$
 e osserviano de la successione
 a_n è o segno variabile. Proviaens le convergenta assoluta.

 $0 \le |a_n| = \frac{|\sin n|^n}{N^2} \le \frac{1}{N^2}$

Scapliano quindi $b_n = \frac{1}{N^2}$ e utilitatione il criterio del
confronto. Poi de $\sum_n \frac{1}{N^2}$ converge, ande $\sum_n |a_n|$ converge, quindi, per il criterio di convergenta assoluta,

 $\sum_n a_n$ converge.

9. La norma del vettore
$$\begin{pmatrix} 9 \\ 3 \\ 3 \end{pmatrix}$$
 vale

(a) 9 \blacktriangleright (b) $3\sqrt{11}$ (c) $\sqrt{15}$

(d) 15

Solutione:

10. L'insieme
$$\{(x,y) \in \mathbb{R}^2 : (x^2 + y^2 - 4)(y - x) > 0\}$$
 è

(a) un semidisco

- (b) un semipiano
- (c) il complementare di un semidisco
- ▶ (d) l'unione disgiunta di un semidisco e una regione illimitata

